A Numerical Study of Active-Set and Interior-Point Methods for Bound Constrained Optimization

نویسندگان

  • Long Hei
  • Jorge Nocedal
  • Richard A. Waltz
چکیده

This papers studies the performance of several interior-point and activeset methods on bound constrained optimization problems. The numerical tests show that the sequential linear-quadratic programming (SLQP) method is robust, but is not as effective as gradient projection at identifying the optimal active set. Interiorpoint methods are robust and require a small number of iterations and function evaluations to converge. An analysis of computing times reveals that it is essential to develop improved preconditioners for the conjugate gradient iterations used in SLQP and interior-point methods. The paper discusses how to efficiently implement incomplete Cholesky preconditioners and how to eliminate ill-conditioning caused by the barrier approach. The paper concludes with an evaluation of methods that use quasi-Newton approximations to the Hessian of the Lagrangian.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

A full Nesterov-Todd step interior-point method for circular cone optimization

In this paper, we present a full Newton step feasible interior-pointmethod for circular cone optimization by using Euclidean Jordanalgebra. The search direction is based on the Nesterov-Todd scalingscheme, and only full-Newton step is used at each iteration.Furthermore, we derive the iteration bound that coincides with thecurrently best known iteration bound for small-update methods.

متن کامل

Convergent Infeasible Interior-Point Trust-Region Methods for Constrained Minimization

We study an infeasible interior-point trust-region method for constrained minimization. This method uses a logarithmic-barrier function for the slack variables and updates the slack variables using second-order correction. We show that if a certain set containing the iterates is bounded and the origin is not in the convex hull of the nearly active constraint gradients everywhere on this set, th...

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

An interior-point algorithm for $P_{ast}(kappa)$-linear complementarity problem based on a new trigonometric kernel function

In this paper, an interior-point algorithm  for $P_{ast}(kappa)$-Linear Complementarity Problem (LCP) based on a new parametric trigonometric kernel function is proposed. By applying strictly feasible starting point condition and using some simple analysis tools, we prove that our algorithm has $O((1+2kappa)sqrt{n} log nlogfrac{n}{epsilon})$ iteration bound for large-update methods, which coinc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006